CARBON-CARBON ALKYLATION OF ENAMINES WITH MANNICH BASES II.¹ A NEW SYNTHESIS OF PYRAN CONTAINING FUSED RING SYSTEMS.

M. von Strandtmann, M. P. Cohen, and J. Shavel, Jr. Department of Synthetic Organic Chemistry, Warner-Lambert

Research Institute, Morris Plains, New Jersey (Received 2 July 1965)

In a previous communication¹ we have reported on the alkylation of enamines with Mannich bases. One of the reactions described was a spontaneous intramolecular hemiketalization of the primary product of the alkylation of cyclohexanone pyrrolidine enamine with 1-dimethylaminomethyl-2-naphthol. The resulting compound was shown to be 7a,8,9, 10,11a,12-hexahydro-9H-benzo[a]xanthin-7a-ol (1, Table I). Further exploration of this cyclization has shown that the formation of 1 is representative of a general synthesis suitable for the preparation of a wide variety of pyran containing fused ring systems. In a recent communication² Paquette disclosed a related reaction of phenolic aldehydes with enamines which gave derivatives of pyran-4-ol. The similarity of the mechanism of both reactions prompts us to publish a preliminary account of our results in this field.

We have found that refluxing a phenolic Mannich base with an equivalent quantity of a suitable enamine in dioxane, until evolution of basic fumes has ceased, results in the

3103

formaticn of cyclic O,N-acetals having the pyran nucleus. The likely mechanism for this reaction is the elimination of the dialkylamine followed by a Michael-type addition of the unsaturated species to the enamine. The resulting charged intermediate cyclizes readily to an a-aminopyran derivative as shown in the following scheme:

 $\underbrace{ \begin{array}{c} \downarrow_{\mathrm{CH}_{\mathbf{2}}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} \\ 0 \mathrm{H} \end{array} }_{\mathrm{OH}} \underbrace{ \begin{array}{c} \downarrow_{\mathrm{CH}_{\mathbf{2}}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} \\ 0 \end{array} }_{\mathrm{OH}} \underbrace{ \begin{array}{c} \downarrow_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} \\ 0 \end{array} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \downarrow_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} \\ 0 \end{array} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \downarrow_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \downarrow_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}}^{\mathrm{CH}_{\mathbf{2}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \underbrace{ \begin{array}{c} \bigg_{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{OH}} \stackrel{}{\longrightarrow} _{\mathrm{$

If water is added to the reaction mixture, hydrolysis ensues and a-hydroxypyrans are obtained as the final products.

Reactions illustrative of the versatility of this synthesis are summarized in Table I.

TABLE I

Reaction of Phenolic Mannich Bases with Enamines

	Mannich Base	Enamine	Product	M.p., ⁰ C
1.	l-Dimethylaminomethyl- 2-naphthol	Cyclohexanone pyrrolidine enamine	CLEOH	143.5-145
2.	-ŋ	N-isobutenyl- morpholine		154-156
3.	17	N-benzoyl-4- piperidone pyr- rolidine enamine	NCOC6H5	192-194

4.	3-Dimethylaminomethyl- 4-hydroxycoumarin	N-isobutenyl- morpholine		142–144
5.		×	R = OH	135-139
6.	•	Cyclohexanone pyrrolidine enamine	HO	190 -194
7.	2-Dimethylaminomethyl- 3-hydroxynaphthoquinone	N-1Sobutenyl- morpholine		153-154.5
8.		#	O R = OH	191-193
9.	2-Dimethylaminomethyl- 3-hydroxypyridine	N,N-dimethylis butenylamine	o- Grand	114-117
10.	*	Cyclohexanone pyrrolidine enamine		153-157.5
11.	•	N-benzoyl-4- piperidone pyr rolidine enami		176 -17 8
12.	5-Dimethylaminomethyl- 6-hydroxyquinoline	N,N-dimethylis butenylamine	~ ČÇofi	201.5-203.5

Some of the products contain new ring systems (Table I -3,9,10,11). The two hitherto undescribed starting materials, N-benzoyl-4-piperidone pyrrolidine enamine (not characterized) and 5-dimethylaminomethyl-6-hydroxyisoquinoline (m.p., 106-107.5°), were prepared by standard procedures^{3,4}. Correct analyses were obtained for all compounds described. The infrared and p.m.r. spectra are consistent with the assigned structures.

.

REFERENCES

- 1. Part I of this series, J. Org. Chem., 30, in press (tentatively scheduled for August, 1965).
- L. A. Faquette, <u>Tetrahedron Letters</u>, No. 18, 1291 (1965).
- 3. G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz and R. Terrel, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 207 (1963).
- 4. H. Hellmann and G. Opitz, a-Aminoalkylierung, Verlag Chemie GMBH, Weinheim, 1960.

.